Room Temperature Ferromagnetism of Ni-doped SnO2 System
نویسنده
چکیده
A series of Sn1-xNixO2 films were fabricated by sol-gel method. All samples have pure rutile structure and exhibit room temperature ferromagnetism (RTFM). Magnetic moment per Ni ion decreases with the increase of Ni doping because antiferromagnetic super-exchange interaction takes place in the nearest neighbour Ni ions for the samples with high x. The results of the annealing at oxidizing and reducing atmosphere show oxygen vacancies play a crucial role in producing ferromagnetism. This result supports that the origin of RTFM can be explained with Bound magnetic polaron (BMP) model.
منابع مشابه
Magnetic Properties of Fe and Ni Doped SnO2 Nanoparticles
In this work, we report the room temperature ferromagnetism in Sn1‐xFexO2 and Sn1‐xNixO2 (x = 0.00, 0.03 and 0.05) nano‐crystalline powders. All the samples were prepared using co‐precipitation method. X‐Ray Diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x‐ray analysis (EDAX), UV‐ visible absorption spectroscopy and room temperature magnetiz...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملInsights into the mechanism of electrochemical ozone production via water splitting on the Ni and Sb doped SnO2 catalyst.
The H2O splitting mechanism is a very attractive alternative used in electrochemistry for the formation of O3. The most efficient catalysts employed for this reaction at room temperature are SnO2-based, in particular the Ni/Sb-SnO2 catalyst. In order to investigate the H2O splitting mechanism density functional theory (DFT) was performed on a Ni/Sb-SnO2 surface with oxygen vacancies. By calcula...
متن کاملDoping-dependent electrical characteristics of SnO2 nanowires.
Tin dioxide (SnO2) represents an importantmetal-oxide group that can be suitable for a range of applications through the incorporation of dopants. For example, the electrical conductivity of intrinsic SnO2 depends strongly on the surface properties, as molecular adsorption/desorption will affect the band modulation and space-charge layer, which makes SnO2 an important conductance-type gas-sensi...
متن کامل